首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112919篇
  免费   9337篇
  国内免费   6793篇
电工技术   12884篇
技术理论   2篇
综合类   7555篇
化学工业   22186篇
金属工艺   8526篇
机械仪表   8165篇
建筑科学   3151篇
矿业工程   1814篇
能源动力   5699篇
轻工业   6500篇
水利工程   663篇
石油天然气   4624篇
武器工业   993篇
无线电   12832篇
一般工业技术   12433篇
冶金工业   3061篇
原子能技术   1246篇
自动化技术   16715篇
  2024年   178篇
  2023年   1545篇
  2022年   2199篇
  2021年   3186篇
  2020年   3116篇
  2019年   2949篇
  2018年   2701篇
  2017年   3567篇
  2016年   3845篇
  2015年   3869篇
  2014年   5542篇
  2013年   6181篇
  2012年   6689篇
  2011年   8174篇
  2010年   6615篇
  2009年   7459篇
  2008年   7167篇
  2007年   7929篇
  2006年   7530篇
  2005年   6187篇
  2004年   5400篇
  2003年   5169篇
  2002年   4140篇
  2001年   3264篇
  2000年   2786篇
  1999年   2152篇
  1998年   1496篇
  1997年   1270篇
  1996年   1198篇
  1995年   1174篇
  1994年   1006篇
  1993年   837篇
  1992年   654篇
  1991年   407篇
  1990年   265篇
  1989年   260篇
  1988年   178篇
  1987年   115篇
  1986年   114篇
  1985年   86篇
  1984年   73篇
  1983年   47篇
  1982年   53篇
  1981年   57篇
  1980年   30篇
  1979年   23篇
  1978年   25篇
  1977年   21篇
  1976年   26篇
  1975年   18篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
《Ceramics International》2022,48(17):24346-24354
The borided layer was prepared on the surface of the Ti–5Mo–5V–8Cr–3Al alloy by powder-pack boriding at 1000°C-10h. SEM, EPMA and TEM were used to investigate the effects of alloying elements (Al, V, Mo and Cr) on the growth of TiB whiskers in the borided Ti–5Mo–5V–8Cr–3Al alloy. Wear properties of borided Ti–5Mo–5V–8Cr–3Al alloy were investigated using dry reciprocating friction tests. SEM results show that the thickness of boride layer in Ti–5Mo–5V–8Cr–3Al alloy is thinner than that in the Cp-Ti. This is attributed to the enrichment of alloying elements especially V in TiB/substrate by TEM, which hinders the diffusion of B atoms, thus resulting in the short and thick TiB whiskers in Ti–5Mo–5V–8Cr–3Al alloy. Borided Ti–5Mo–5V–8Cr–3Al alloy has the better wear resistance than as-received alloy.  相似文献   
42.
《Ceramics International》2022,48(3):3762-3770
Cf/Hf0.5Zr0.5C-SiC composites were prepared by introducing Hf0.5Zr0.5C matrix (11 cycles) and SiC matrix (9 cycles) into the carbon cloth preform through precursor impregnation and pyrolysis (PIP) process. The influence of the introduction time of SiC matrix on the microstructure and mechanical properties of Cf/Hf0.5Zr0.5C-SiC composites was studied, and the results show that with the increase of the PIP cycles of the SiC matrix introduced before Hf0.5Zr0.5C matrix, the composite open porosity decreased, and the flexural strength and modulus presented an obvious upward trend. CS45 sample, which has 4 cycles of PIP SiC introduced in advance, has the highest flexural strength, flexural modulus and interfacial shear strength of 402.73 ± 35.73 MPa, 56.92 ± 3.97 GPa and 100.88 ± 7.79 MPa, respectively. Hf0.5Zr0.5C matrix has a loose and porous structure, so when more SiC matrix was introduced in advance, its covering effect on the surface of fibers led to less intra-bundle pores and thusly denser composite structure, and due to the compactness of SiC matrix, better overall bonding of fiber, interface and matrix was achieved, as well as better load transfer effect, which led to obvious interfacial debonding and cracking based on the in-situ SEM observation during flexural tests. While in the sample without pre-introduced SiC, the cracking occurred mainly between the interface and porous matrix and the overall performance of the material was poor.  相似文献   
43.
《Ceramics International》2022,48(6):8228-8234
This paper introduces a novel process to efficiently utilize medium-/low-grade or waste bauxite. The medium-/low-grade or waste bauxite is usually rich in iron oxide (total iron oxide content≥8%) or titanium dioxide (titanium dioxide content≥5%). In addition, both iron oxide and titanium dioxide have higher contents than typical bauxite (total iron oxide + titanium dioxide contents≥20%). It is difficult to obtain mullite with excellent properties using the process of beneficiation and sintering synthesis. Based on different reduction temperatures of K2O, Na2O, FeOx, SiO2 and TiO2, the reduction of K2O, Na2O and FeOx was set as the reduction end point. While SiO2 start to be reduced, TiO2 was unstable under high temperature and low oxygen partial pressure. The reason for the final formation of Ti2O3 in the TiO2→TiO2-x transformation process was analysed, and the morphology of the multiphase material obtained from the Ti2O3–3Al2O3·2SiO2 solid solution was characterized. The reaction model was established.  相似文献   
44.
The structure and properties of Mn-doped 0.67BiFeO3-0.33BaTiO3 ceramics are systematically investigated with respect to the effects of annealing prior to rapid cooling by quenching in air. Air-quenching induces a change in crystal structure from pseudo-cubic to rhombohedral, with higher quenching temperatures leading to an increased rhombohedral distortion. These structural changes are correlated with the appearance of more well-defined ferroelectric domain configurations. It is shown that the surface preparation procedures for XRD measurements can induce significant changes in the peak profiles, indicating differences in crystal structure between the surface and bulk regions. Frequency dispersion in the temperature-dependent relative permittivity for the as-sintered sample is significantly reduced after quenching, accompanied by enhancement of the Curie point and improved temperature-stability of piezoelectric properties. It is proposed that the formation of defect clusters by A-site cation diffusion during cooling is circumvented by quenching, leading to the observed modification of structural distortion and ferroelectric properties.  相似文献   
45.
《Ceramics International》2022,48(18):26196-26205
Sea urchin-like LiAlO2@NiCoO2 hybrid composites with core-shell structure assembled with nanoneedles have been successfully fabricated through a facile hydrothermal route followed by a calcination procedure in N2 for the first time. The sea urchin-like architecture with large accessible surface can offer numerous active sites for redox reaction. The synergy of two advantages has dramatically improved the electrochemical behavior in terms of specific capacity, cycle performance and rate capability, especially at high current densities. The LiAlO2(5.0 wt%)@NiCoO2 displays charge capacities are 1309.0 and 933.6 mAh g?1 at 0.5 and 1A g?1, respectively, after 400 cycles. However, the charge capacities of bare NiCoO2 are only 562.9 and 476.7 mAh g?1 at corresponding rates. Especially, LiAlO2(5.0 wt%)@NiCoO2 preserves 358.1 mAh g?1 after 500 cycles at 2A g?1 with a capacity retention of 74%. The superior electrochemical property is related to the sea urchin-like nature and the ingenious composition design. In addition, the DFT calculation result shows that the formed stable, well-coordinated, and metallic interface between LiAlO2 and NiCoO2 are very helpful for reducing the interfacial impedance and beneficial for the improved rate capability of the materials. Therefore, such LiAlO2@NiCoO2 composites with unique morphology demonstrate a huge potential as electrode materials for Li-ion batteries.  相似文献   
46.
《Ceramics International》2022,48(3):3536-3543
We investigated the optical and electrical properties of Ta2O5/Ag/Ta2O5 films as functions of the thicknesses of the Ta2O5 and Ag layers. It was found that with an increase in the thicknesses of the Ta2O5 and Ag layers from 10 to 40 nm and from 12 to 24 nm, respectively, the sheet resistance, carrier concentration, electron mobility, and resistivity of the Ta2O5/Ag/Ta2O5 film varied from 2.02 to 8.95 Ω/sq, 5.74 × 1021 to 2.92 × 1022 cm–3, from 13.21 to 24.07 cm2/V·s, and from 8.89 × 10-6 to 8.24 × 10-5 Ω cm, respectively. The average transmittance (Tav) of the multilayer samples ranged from 57.18% to 93.99%, and it depended on the Ta2O5 and Ag layer thicknesses. The highest Tav of 93.99% was observed for the film with 35 nm thick Ta2O5 and 18 nm thick Ag layers, and the peak Haacke's figure of merit (157.04 × 10–3 Ω–1) was obtained for 20 nm thick Ta2O5 and 21 nm thick Ag layers. Ta2O5 (100 nm) and Ta2O5/Ag/Ta2O5 (20 nm/21 nm/20 nm) samples had optical bandgaps of 4.70 and 4.45 eV, respectively. Film Wizard simulations were conducted to understand the dependence of the transmittance of the multilayer on the thicknesses of the Ta2O5 and Ag layers, and phasor analyses were performed to determine how the transmittance of the Ta2O5/Ag/Ta2O5 (20 nm/21 nm/20 nm) film depended on the Ta2O5 layer's thickness.  相似文献   
47.
《Ceramics International》2022,48(6):8025-8030
In order to meet the high demand for joining ceramic/superalloy composite structure in extreme environments, a novel high-temperature resistant adhesion technique was developed for joining ZrO2 and Inconel 625 by applying an aluminum phosphate emulsion/zirconium sol based adhesive. With increasing temperature, a series of reactions occurred in adhesive, and its high-temperature bonding was attributed to the formation of a composite structure containing various ceramics and intermetallics. The adhesive after RT curing could find direct applications in extreme environments, and provide bonding strength no less than 2.5 MPa in the temperature range of RT-1100 °C. The bonding strength was higher than 4 MPa in the temperature range of 800–1000 °C, which was further attributed to the formation of an effective CTE-gradient relationship among ZrO2, adhesive and Inconel 625, as well as the interfacial reactions between the two substrates. The work broadened the application of adhesion technique and brought new ideas for joining dissimilar engineering materials.  相似文献   
48.
《Ceramics International》2022,48(18):25808-25815
The harmless disposal of lead paste in the spent lead-acid batteries (LABs) remains an enormous challenge in traditional pyrometallurgical recycling. Here, we introduced a hydrometallurgical method for the recycling of the spent LABs’ waste to obtain the β-PbO as a novel zinc ion batteries (ZIBs) active material. The obtained β-PbO exhibits ultra-flat charge/discharge voltage platforms (0.21 mV/(mAh g?1)) and stable specific capacity. During the charge/discharge, the β-PbO spontaneously triggers the formation of (ZnSO4)[Zn(OH)2]3·5H2O (ZHS) micro-sheets as a surface passivation layer. Moreover, the ex-situ X-ray spectra reveal that the reversible phase transformation occurs between PbSO4 and Pb with the assistance of ZHS by adjusting the PH value on the electrode-electrolyte interface. The synergistic two-phase-reaction mechanism generates ultra-flat voltage platforms upon the charge/discharge. This “energy-saving and environment-friendly” recycling route eliminates the major source of emission of pollution particulates/gases compared to the traditional pyrometallurgical recycling, while at the same time replacing energy-consuming and environmentally detrimental processes of synthesis of current ZIBs cathodes.  相似文献   
49.
《Ceramics International》2022,48(3):3600-3608
In the present study, the mechanical properties and microstructure of C/Mullite composites with a PyC-SiC double-layer interfacial coating after annealing were systematically studied to evaluate the evolution of thermal stability in an inert atmosphere and a vacuum. The C/Mullite composites annealed in the inert atmosphere exhibited better thermal stability than those annealed under the vacuum. The main factor for failure of the composites was carbothermal reduction. The activation temperature of carbothermal reduction in composites in the inert atmosphere was ~100 °C higher than that in the vacuum. Once carbothermal reduction was activated, the microstructure of composites was destroyed, resulting in a significant weight loss and mechanical property degeneration. The degeneration of mechanical properties was unrecoverable.  相似文献   
50.
《Ceramics International》2022,48(14):20220-20227
A specially designed experimental device was used in laboratory to investigate the corrosion of mullite during the calcination of Li(NixCoyMnz)O2 (LNCM) materials. The anti-corrosion tests were carried out at 1000, 1100, 1200 and 1300 °C, and characterized with X-ray diffraction and scanning electron microscopy. The influence of temperature on the interactions between mullite insulation materials and LNCM materials was determined. In addition, the high-temperature creep properties of the mullite insulation materials before and after corrosion were tested. The laboratory scale tests, thermodynamic and kinetic calculations allowed a more comprehensive understanding of the evolution of the mullite insulation materials during serving for the roasting process of LNCM materials. Through this research, it is suggested that the upgrading of the kiln lining in the lithium battery industry should select materials with excellent resistance to alkali corrosion, especially excellent resistance to Li+ corrosion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号